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Multifunctionalized octahydroxy porphyrins, 
5,10,15,20-tetrakis(2‘,6‘-dihydroxyphenyl)-porphynn, 
H2T(2’,6’-DHP)P, and 5,10,15,20-tetrakis-(3’,5‘-dihy- 
droxyphenyl)porphyrin, H2T(3’,5’-DHP)P, have been 
developed as solid state building blocks for the self- 
assembly of hydrogen bonded supramolecular net- 
works. A series of solid state X-ray structures of 
these porphyrins with various solvates show strong 
inter-porphyrin interactions through their periphe- 
ral hydroxyl substituents by means of directional 
hydrogen bonding. The position of the hydroxyl 
groups and the nature of the lattice guest (i.e., 
solvate) have dramatic influences on the molecular 
packing and the porosity of the structures. In 
particular, with ethyl acetate as solvate, the crystal 
structure of H2T(3’,5’-DHP)P exhibits a one dimen- 
sional columnar network, whereas H*T(2’,6’-DHP)P 
shows essentially a two dimensional, hydrogen- 
bonded, layered structure. With benzonitrile as 
solvate, the structure of HzT(3’,5’-DHP)P changes 
substantially to a two dimensional corrugated 
structure in order to accommodate a larger pore sue. 
The pore volumes filled by solvate in these 
structures are exceptionally large: 56%, 61%, and 
67% of the unit cell volume, respectively. Crystal 
structure data for HzT(3’,5’-DHP)P 5 EtOAc: 
C&H7,,N4Ol8, M 1183.24, triclinic, Pi, u = 7.245 (2) 
A, b = 14.727 (3) A, c = 14.835 (4) A, a = 90.18 (2)”, /?= 
92.90 (2)” and y = 90.02 (2)”, V = 1580.8(7) A3, Z = 1; R1 
=0.113, wR2 = 0.280 (on 2588, I > 2dI) observed data). 
For H2T(2’,6’-DHP)P 4 EtOAc: C ~ D H ~ ~ N ~ ~ ~ ~ ,  
M =  1095.14, triclinic, Pi, a = 13.736 (3) A, b = 14.032 

(3) A, c = 17.029 (3) A, CK = 93.77 (3)”, 8=110.92 (3)” and 

wR2 = 0.112 (on 6260, I > 2a(I) observed data). 
For H2T(3’,5’-DHP)P 7 C7H5N: C93H65Nl10B, 
M = 1464.56, mpnoclinic, PZ1/m, a = 11.105 (4) A, 
b= 25.744 (7) A, c=14.022 (3) A, p=l08.09 (2)”, 
V = 3811(2) A3, Z = 2; R1 = 0.062, wR2 = 0.130 (on 
2588, I 1 2 4 )  observed data). 

y = 111.81 (3)”, V = 2770.9 (10) A3, Z = 2; R1 = 0.045, 

Keywords: Porphyrins, hydrogen bonding, network solids, 
clathrate 

In order to develop nanoporous materials with 
desired properties, a wide range of organic 
molecules have been employed as molecular 
building blocks [1 I. Porphyrins and metallopor- 
phyrins provide an important, but relatively 
unexplored, class of such building blocks be- 
cause of their large size, ease of synthesis, 
excellent thermal stability, and diverse coordi- 
nation and catalytic chemistry. Furthermore, 
porphyrins provide an extremely versatile plat- 
form on which to build desired peripheral 
functionality with designed orientations. Such 
functionality can provide the intermolecular 
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interactions that control self-assembly both in 
solutionand in thesolid sta te. There havebeena few 
recent reportson the supramolecular architectures 
of porphyrin solids with metal-organic coordina- 
tion [21 and hydrogen bonded [3J networks. In 
addition, the extensive structural work that exists 
for porphyrins and metalloporphyrins [41 provide 
a database for the systematic examination of 
intermolecular interactions in the solid state. 
Notably, Strouse and coworkers [51 have reported 
a wide rangeof clathrate-like host/guestsolid state 
structures of H2TPP and its metal derivatives. 
Meso-tetraphenylporphyrins are the most widely 
used systems due to their ease of synthesis and 
facile functionalization. 

In order to more rationally control the 
structure of porphyrinic solids, we have exami- 
ned a pair of symmetric octahydroxy substituted 
porphyrins, wherein the three dimensional 
structure is determined by the directional 
hydrogen bonding of hydroxyl groups. We 
report here the use of octahydroxy porphyr- 
ins, 161 H2T(2’,6’-DHP)P and HzT(3’,5’-DHP)P 
(Fig. 1) as building blocks for the synthesis of 
network crystalline solids, together with three X- 
ray structures derived from these porphyrins. 

To delineate the effect of substituent position 
on the crystal packing and porosity of the 
structure, diffraction quality crystals of H2T 
(3‘,5‘-DHP)P and H2T(2’,6’-DHP)P porphyrin 
crystals were obtained with the same lattice 
guest, ethyl acetate [7 -91. A one-dimensional 

HO OH 

HO AOH 
HzTiZ 6 -DHP)P H,T(3 ,5 -0HP)P 

FIGURE 1 Chemical structures of octahydroxy porphyrins 
5,10,75,20-tetrakis(2’,6’-dihydroxy-phenyl)porphyrin (HIT 
(2’,6’-DHP)P) and 5,10,15,20-tetrakis-(3’,5‘-dihydroxyphe- 

columnar packing is observed for H2T(3’,5’- 
DHP)Pe5 EtOAc (Fig. 2). The structure is 
controlled by the presence of strong, directional 
hydrogen bonding between the meso-phenyl 
hydroxyl groups. The porphyrin rings are al- 
most planar and are nearly eclipsed with respect 
to one another in the columns. There is hydro- 
gen bonding [lo1 only between each porphyrin 
and its nearest neighbor above and below with 
an inter-porphyrin separation of 7 A. As a 
result, there is minimal T-T interaction between 
the porphyrins. There is no hydrogen bonding 
between columns. Two solvate-filled channels 

FIGURE 2 Molecular packing diagram of HzT(3‘,5/- 
DHP)P 5 EtOAc complex; (a) the one-dimensional colum- 
nar structure; (b) perpendicular view of packing diagram 
(van der Waals spheres shown at 0.7 of atomic radii), 
showing solvate-filled channels of 6.5 by 6.5 A between the 
columns. Solvate molecules are not shown for clarity. 
Distances shown for the channels exclude van der Waals 

ny1)porphyrin (HZT(3’,5’-DHP)P). radii. 
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FIGURE 2 (Continued). 

3.4 by 3.4 A (van der Waals surface to van der 
Waals surface) are observed between the por- 
phyrin planes, normal to one another and 
normal to the porphyrin columns. Four such 
columns form a network resulting in a bigger 
channel size of 6.5 by 6.5 A (Fig. 2b). For a given 
channel all four porphyrins lie in the same 
plane. The phenyl rings of porphyrins in 
adjacent columns interleave and are 4.5 A apart, 
indicating limited X-T interaction. 

Upon changing the position of the hydroxy 
substituents from the rnetu- to the ortho- positions 
of the phenyl rings, a substantial change in the 
structure occurs: H2T(2‘,6’-DHP)P 0 4 EtOAc has 
a two-dimensional layered structure, as shown 
in the molecular packing diagram of Figure 3. 
The porphyrin rings are slightly ruffled and 
show strong directional hydrogen bonding 
induced by the peripheral hydroxyl groups [lo]. 
Each porphyrin has four hydrogen bonded 
nearest neighbors in an offset orientation. In a 
given layer, the vertical distance between the 
offset porphyrins is 7.0 A. The center-to-center 
distance between the adjacent layers is 11.8 A. A 

large channel of about 3.0 by 3.6 A runs parallel 
to the layers and the porphyrin planes and is 
filled with ethyl acetate molecules; no hydrogen 
bonding occurs between the porphyrinic layers. 
Ethyl acetate molecules in the lattice are hydro- 
gen-bonded through their carbonyl groups to 
the hydroxyl groups of the porphyrins. 

To examine the effect of the solvate on the 
molecular packing in these systems, crystals of 
H2T(3’,5’-DHP)P were grown from benzonitrile, 
a much larger solvate molecule[lll. The solid- 
state structure is dramatically altered by the 
benzonitrile (Fig. 4). The structure has changed 
from a one dimensional columnar (for ethyl 
acetate) to a two dimensional corrugated struc- 
ture, with a pore structure matched to the 
benzonitrile. Each porphyrin is hydrogen 
bonded to three closest neighbors. There is some 
loss of hydrogen bonding between the hydroxyl 
groups of the porphyrins, which is replaced by 
hydrogen bonding to nitrile groups of the 
benzonitrile. The molecular packing models 
show varying solvate-fiIIed channels in different 
directions along the unit cell axes. The center-to- 
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1 72 P. BHYRAPPA et G I .  

FIGURE 3 Molecular packmg diagram of HlT(2’,6’-DHP)P 4 EtOAc complex; (a) two dimensional layered structure. (b) 
perpendicular view of van der Waals (0.7 of atomic radii) packing diagram showing 3.4 by 3.4 A wide solvate-filled channels 
along the layers. Solvate molecules are not shown for clarity. Distances shown for the channels exclude van der Waals radii. 
Porphyrins in light and dark shades indicate that they are closer and further away, respectively. 

center distance between the adjacent layers is 
about 12.6 A and the vertical distance between 
nearest hydrogen-bonded porphyrins is 7.40 A. 

The porosity filled by solvate in these stntc- 
tures is striking: while most free-base porphyrin 
structures have less than three solvates per 

porphyrin [2, 51 (triclinic H2TPP, for example, 
has no solvate [12]), our porphyrins have as 
many as seven. As a quantitative measure, the 
total void volume (i.e., unit cell volume minus 
the porphyrins’ van der Waals volume [131) in 
our structures is 56%, 61%, and 67% of the unit 
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FIGURE 4 van der Waals (0.7 of their atomic radii) packing diagram of H2T(3’,5’-DHP)P 7 C6H,CN complex showing 3.0 by 
4.0 A wide solvate-filled channel; normal to this view there is a second channel, 6.5 by 5.5 A. The porphyrins shown light and 
dark shades indicate that they are in front and back directions, respectively. Solvate molecules are not shown for clarity. 
Distances shown for the channels exclude van der Waals radii. 

cell volume for HzT(2’,6’-DHP)P . 4  EtOAc, 
H2T(3’,5/-DHP)P 5 EtOAc, and H2T(3/,5’- 
DHP)P 7 C~HSCN, respectively. For compari- 
son, the structure of H2TPP has a void volume of 
only 26% [12,13]. The three dimensional self- 
assembly of these porphyrins is strongly influ- 
enced by directional hydrogen bonding and is 
largely independent of 7r-7r interactions. The 
present study demonstrates the effect of the 
directionality of the porphyrin substituents and 
size of the solvate on the supramolecular 
architectures of these molecules. We are now 
expanding these supramolecular architectures to 
metal-substituted porphyrins and find similar 
solid-state structures; further work is underway 
to use the established reactivity of metallopor- 

phyrins to create heterogeneous catalysts for 
shape selective oxidations [141. 
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